Highly Efficient Perovskite Solar Cells with Tunable Structural Color

نویسندگان

  • Wei Zhang
  • Miguel Anaya
  • Gabriel Lozano
  • Mauricio E. Calvo
  • Michael B. Johnston
  • Hernán Míguez
  • Henry J. Snaith
چکیده

The performance of perovskite solar cells has been progressing over the past few years and efficiency is likely to continue to increase. However, a negative aspect for the integration of perovskite solar cells in the built environment is that the color gamut available in these materials is very limited and does not cover the green-to-blue region of the visible spectrum, which has been a big selling point for organic photovoltaics. Here, we integrate a porous photonic crystal (PC) scaffold within the photoactive layer of an opaque perovskite solar cell following a bottom-up approach employing inexpensive and scalable liquid processing techniques. The photovoltaic devices presented herein show high efficiency with tunable color across the visible spectrum. This now imbues the perovskite solar cells with highly desirable properties for cladding in the built environment and encourages design of sustainable colorful buildings and iridescent electric vehicles as future power generation sources.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High efficient Perovskite solar cells base on Niobium Doped TiO2 as a Buffer Layer

Here, the effect of lightly Niobium doped TiO2 layer on the performance of perovskite solar cells has been studied by using solar cell capacitance simulator (SCAPS). N addition, the effects of Niobium concentration, buffer film thickness and operating temperature on the performance of the perovskite solar cell are investigated. For doping level of 3.0 mol% into the TiO2 layer, cell efficiency o...

متن کامل

Structural and Quantitative Investigation of Perovskite Pore Filling in Mesoporous Metal Oxides

In recent years, hybrid organic–inorganic perovskite light absorbers have attracted much attention in the field of solar cells due to their optoelectronic characteristics that enable high power conversion efficiencies. Perovskite-based solar cells’ efficiency has increased dramatically from 3.8% to more than 20% in just a few years, making them a promising low-cost alternative for photovoltaic ...

متن کامل

Compact layer free mixed-cation lead mixed-halide perovskite solar cells.

Thickness-tunable and compact FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite thin films are achieved with a large grain size up to 12 microns. They are then employed to fabricate functional solar cells with a simplified planar structure without the use of electron-transport (ETL) layers. These results are highly encouraging for the future large-scale fabrication of FA0.83Cs0.17Pb(I0.6Br0.4)3-based solar...

متن کامل

M13 Virus-Enabled Synthesis of Titanium Dioxide Nanowires for Tunable Mesoporous Semiconducting Networks

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. ABSTRACT Mesoporous semiconducting networks exhibit advantageous photo-electrochemical properties. The M13 virus is...

متن کامل

Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite.

Efficient, neutral-colored semitransparent solar cells are of commercial interest for incorporation into the windows and surfaces of buildings and automobiles. Here, we report on semitransparent perovskite solar cells that are both efficient and neutral-colored, even in full working devices. Using the microstructured architecture previously developed, we achieve higher efficiencies by replacing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015